FROGSSTAT DESeq2 Visualisation
Context
Are there ASV with differential abundance between 2 conditions ? And which are they ?
To answer these questions, we perform a differential abundance analysis using DESeq2 on the phyloseq object.
The package DESeq2 provides methods to test for differential expression by use of negative binomial generalized linear models
- 1st step: FROGSSTAT DESeq2 Preprocess
- 2nd step : FROGSSTAT DESeq2 Visualisation
Available to analyse ASV or Function (from FROGSFUNC tools)
Be aware to use data without normalisation
DESeq has is own normalisation method suited to this kind of data. It uses the postcount function optimised for metagenomic count table
2nd step: visualise the DESeq2 results with FROGSSTAT DESeq2 Visualisation
FROGSSTAT DESeq2 Visualisation Launch one Rmarkdown script to visualise the DESeq2 results.
use cases:
Command line
v4.1.0
usage: deseq2_visualisation.py [-h] [--debug] [--version] -v VAR [-m1 MOD1]
[-m2 MOD2] [-pa PADJ] -a {ASV,FUNCTION} -p
ABUNDANCEDATA -d DDS [--ipath-over IPATH_OVER]
[--ipath-under IPATH_UNDER] [-o HTML]
[-l LOG_FILE]
Launch Rmarkdown to visualise differential abundance analysis.
optional arguments:
-h, --help show this help message and exit
--debug Keep temporary files to debug program.
--version show programs version number and exit
-v VAR, --var VAR variable that you want to test.
-m1 MOD1, --mod1 MOD1
one value of the tested variable you want to compare
(if more than 2 value in your experiement variable
analyzed.)
-m2 MOD2, --mod2 MOD2
second value of the tested variable you want to
compare.(if more than 2 value in your experiement
variable analyzed.)
-pa PADJ, --padj PADJ
the adjusted p-value threshold to defined ASV as
differentially abundant. [Default: 0.05]
-a {ASV,FUNCTION}, --analysis {ASV,FUNCTION}
Type of data to perform the differential analysis.
ASV: DESeq2 is run on the ASVs abundances table. FUNC:
DESeq2 is run on FROGSFUNC function abundances table
(frogsfunc_functions_unstrat.tsv from FROGSFUNC
function step).
Inputs:
-p ABUNDANCEDATA, --abundanceData ABUNDANCEDATA
The path to the RData file containing the ASV/FUNCTION
abundances table. (result of FROGS Phyloseq Import
Data)
-d DDS, --dds DDS The path to the Rdata file containing the DESeq dds
object (result of FROGS DESeq2 Preprocess)
Outputs:
--ipath-over IPATH_OVER
The tsv file of over abundants functions (FUNCTION
analysis only)
--ipath-under IPATH_UNDER
The tsv file of under abundants functions (FUNCTION
analysis only)
-o HTML, --html HTML The HTML file containing the graphs. [Default:
DESeq2_visualisation.html]
-l LOG_FILE, --log-file LOG_FILE
This output file will contain several informations on
executed commands.
Example of command line:
./deseq2_visualisation.py \
--abundanceData data/phyloseq_ASV.Rdata \
--analysis ASV \
--dds EnvType_DESeq_ASV.Rdata \
--var EnvType \
--mod1 SaumonFume \
--mod2 DesLardons \
--log-file deseq2_preprocess_EnvType_ASV.log \
--html EnvType_DesLardons_SaumonFume_ASV.nb.html
./deseq2_visualisation.py \
--abundanceData phyloseq_FUNC.Rdata \
--analysis FUNCTION \
--dds EnvType_DESeq_FUNC.Rdata \
--var EnvType \
--mod1 SaumonFume \
--mod2 DesLardons \
--log-file deseq2_preprocess_EnvType_FUNC.log \
--html EnvType_DesLardons_SaumonFume_FUNC.nb.html
Galaxy
for ASV
for functions
FROGSSTAT DESeq2 Preprocess needs the phyloseq object (.Rdata) created by FROGSSTAT Phyloseq Import Data tool.
-
Data object (data.Rdata): One phyloseq object stored in a Rdata file. This file is the result of :
- for ASV: asv.dds.Rdata from FROGSSTAT_Phyloseq_Import_Data tool
- for FUNCTION: DESeq2_preprocess_tool output for FUNCTION parameter.
-
DESeq2 object (dds.Rdata): A DESeq2 dataset (dds) stored in Rdata file. This file is the result of FROGSSTAT_DESeq2_preprocess tool.
Outputs
HTML file: visualisation of Differential Abundance of ASV or FUNCTIONS depending on the case.
The html file contains Table, Pie Chart, MA plot, Volcano plot and Heatmap plot. If the experimental variable is qualitative, only samples corresponding to the 2 compared conditions are shown in the Heatmap. Otherwise, samples are sorted in increasing order of the experimental variable.
Table containing the differentially abundant ASVs.
Only significantly differentially abundant ASV are displayed with an adjusted p-value (previously defined threshold). p-value are adjusted using the Benjamini-Hochberg method
- log2 is used for interpret and scale reasons
- Positive values denote an increase, and negative a decrease of abundance
- log2FC = 1 means a doubling
- log2FC = 2 means a quadrupling
- log2FC = -1 means a halving
- log2FC = -2 means a quartering
Pie Chart, MA plot, Volcano plot and Heatmap plot corresponding to the differentially abundant ASVs.
Differentially abundant functions visualized with iPath 3
FUNCTION analysis only
Two TSV files for Ipath3 visualisation
For function analyses only
- ipath_under.tsv
- ipath_over.tsv
To visualise and explore metabolic pathways with IPATH3 website , use the two files ipath_under.tsv and ipath_over.tsv as inputs.
FROGSSTAT DESeq2 Visualisation
FROGSSTAT DESeq2 Visualisation
Context
Are there ASV with differential abundance between 2 conditions ? And which are they ?
To answer these questions, we perform a differential abundance analysis using DESeq2 on the phyloseq object.
The package DESeq2 provides methods to test for differential expression by use of negative binomial generalized linear models
Available to analyse ASV or Function (from FROGSFUNC tools)
Be aware to use data without normalisation
DESeq has is own normalisation method suited to this kind of data. It uses the postcount function optimised for metagenomic count table
2nd step: visualise the DESeq2 results with FROGSSTAT DESeq2 Visualisation
FROGSSTAT DESeq2 Visualisation Launch one Rmarkdown script to visualise the DESeq2 results.
use cases:
Command line
v4.1.0
usage: deseq2_visualisation.py [-h] [--debug] [--version] -v VAR [-m1 MOD1] [-m2 MOD2] [-pa PADJ] -a {ASV,FUNCTION} -p ABUNDANCEDATA -d DDS [--ipath-over IPATH_OVER] [--ipath-under IPATH_UNDER] [-o HTML] [-l LOG_FILE] Launch Rmarkdown to visualise differential abundance analysis. optional arguments: -h, --help show this help message and exit --debug Keep temporary files to debug program. --version show programs version number and exit -v VAR, --var VAR variable that you want to test. -m1 MOD1, --mod1 MOD1 one value of the tested variable you want to compare (if more than 2 value in your experiement variable analyzed.) -m2 MOD2, --mod2 MOD2 second value of the tested variable you want to compare.(if more than 2 value in your experiement variable analyzed.) -pa PADJ, --padj PADJ the adjusted p-value threshold to defined ASV as differentially abundant. [Default: 0.05] -a {ASV,FUNCTION}, --analysis {ASV,FUNCTION} Type of data to perform the differential analysis. ASV: DESeq2 is run on the ASVs abundances table. FUNC: DESeq2 is run on FROGSFUNC function abundances table (frogsfunc_functions_unstrat.tsv from FROGSFUNC function step). Inputs: -p ABUNDANCEDATA, --abundanceData ABUNDANCEDATA The path to the RData file containing the ASV/FUNCTION abundances table. (result of FROGS Phyloseq Import Data) -d DDS, --dds DDS The path to the Rdata file containing the DESeq dds object (result of FROGS DESeq2 Preprocess) Outputs: --ipath-over IPATH_OVER The tsv file of over abundants functions (FUNCTION analysis only) --ipath-under IPATH_UNDER The tsv file of under abundants functions (FUNCTION analysis only) -o HTML, --html HTML The HTML file containing the graphs. [Default: DESeq2_visualisation.html] -l LOG_FILE, --log-file LOG_FILE This output file will contain several informations on executed commands.
Example of command line:
Galaxy
for ASV
for functions
FROGSSTAT DESeq2 Preprocess needs the phyloseq object (.Rdata) created by FROGSSTAT Phyloseq Import Data tool.
Inputs
Data object (data.Rdata): One phyloseq object stored in a Rdata file. This file is the result of :
DESeq2 object (dds.Rdata): A DESeq2 dataset (dds) stored in Rdata file. This file is the result of FROGSSTAT_DESeq2_preprocess tool.
Outputs
HTML file: visualisation of Differential Abundance of ASV or FUNCTIONS depending on the case.
The html file contains Table, Pie Chart, MA plot, Volcano plot and Heatmap plot. If the experimental variable is qualitative, only samples corresponding to the 2 compared conditions are shown in the Heatmap. Otherwise, samples are sorted in increasing order of the experimental variable.
Table containing the differentially abundant ASVs.
Only significantly differentially abundant ASV are displayed with an adjusted p-value (previously defined threshold). p-value are adjusted using the Benjamini-Hochberg method
Pie Chart, MA plot, Volcano plot and Heatmap plot corresponding to the differentially abundant ASVs.
Differentially abundant functions visualized with iPath 3
FUNCTION analysis only
Two TSV files for Ipath3 visualisation
For function analyses only
To visualise and explore metabolic pathways with IPATH3 website , use the two files ipath_under.tsv and ipath_over.tsv as inputs.
A work by FROGS team